
AD-ABBA 126 MARYLAND NV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/B 9/2

FUNCTIONS AS DATA OBJECTS: THE IMPLEMENTATIDN OF FUNCTIONS IN L--ETC(Ul
JAN 79 P AGRE N00014-76-C-0477

UNCLASSIFIED TR-726 N

ELE INEEE

-MEL

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

20742

80 3 7087
...... _____.

I 'JI

q' ,,,,,i "

N00014-76C-0477
Ja 79 /NSG-7253

Functions as Data Objects:/-The Implementation of Functions in LISPA1

Philip/Agre

Compute Scien/e Deqpa-tment
University of Maryland UCollege Park, Maryland 20742 I0

Abstract:>This paper discusses the manner in which functions are
defined and manipulated in various dialects of the LISP language.

It is argued that the syntax and mechairll ,is; whlch ire usually
provided to accomplish such things as passing functions as
arguments and returning them as values are unnecessarily
inconsistent and clumsy. An alternative scheme for implementing
functions in LISP is presented. It is based on the conceol-)I- a
"linker node", a construct used in Wisconsin/Maryland LISP, and

allows greater uniformity in the handling of different types of
functions. The advantages of being able to handle functions in
the same ways as other common data structures are demonstrated.
One possible function syntax is outlined and coded.

This work was supported in part by the Office of Naval Research
under grant number N00014-76C-0477 and the National Aeronautics
and Space Administration under grant number NSG-7253. Their
support is gratefully acknowledged.

Tis docur :-..t hns bc vn G.::izoved

for r,.I: cn.' salo; its
&d&W bution in unlimited.

A' " T i ii i•

Contents
1. Introduction 1
2. Traditional Implementations of LISP Functions 5
3. A Notion of "Function as Data Object" 8
4. A Possible Manifestation of the Scheme 12
5. Some Examples and Consequences 20
6. Addition of Function Types 25
7. Computing with Functions 29
8. What is Meant by "Referring to a Function"? 33
9. How to Build an Association List 39
10. Conclusion 42
11. Bibliography 44
12. Appendix - A LISP Rendering of the Scheme 45

Acknowledgements - Chuck Rieger, Hanan Samet, Milt Grinberg,
Steve Small, and Rich Wood read drafts of this paper. The severe
errors of reasoning which remain are in spite of their helpful
comments. The text was developed using the facilities of the
Univ. of Maryland Computer Science Center, and the figures and
final text were produced using the facilities of the Univ. of
Maryland Computer Science Department.

I

Ac assio Forl

. DC,± /tA ..
Akv' ()59 !) -17 o " -

I n, tn
, °.t1o~

II ~ ~~ al 1 V. I 1'--,

30 Jan 1979 Functions as Data Objects

1. Introduction

The LISP language is a very simple one, having a uniform

notation and only a few primitive functions and data st¢cctur- .

In fact, many find LISP so simple that it is often taught in

terms of its implementation, complete with drawings of the

internal representations of its major data structure, the cons

node. One problem that arises from this method of teaching LISP

is that it rarely gets to the point where the instructor points

out that there are data structures other than cons nodes

available in LISP. When reading a LISP program, one often finds

great numbers of CAR's, CDR's, and CONS's when the programmer's

interpretations are "get the name field", "get the rest of the

process id's", and "attach a new frame to this environment".

What is needed in these cases is for the programmer to

define an abstract data type such as "personiael recocd", "process

queue", or "environment stack", decide on its representation

(that is, its "internal representation") as cons nodes or numbers

or whatever, and design a set of functions which allow one to

refer to these data types without explicit reference to their

representations. Given that it is so easy to do this in LISP,

this notion of abstract data types could be a powerful unifying

concept in LISP programming.

Our purpose here is to apply the notion of an abstract data

structure to LISP functions. This seems natural enough since one
4t

30 Jan 1979 Functions as Data Objects :2

of the major claims for LISP is that programs are represented as

data structures which can be built and manipulated under program

control. In particular, functions are represented as structures

built from cons nodes.

When discussing functions and their implementations, there

are several levels of distinction which we would like to inake:

1. The abstract mapping between arguments and values,
2. The abstract algorithm, which is to carry out this

mapping,
3. Our representation of this algorithfa as text or a data

structure, and
4. The functional object which is actually applied to

arguments by an interpreter, that is, our
representation of the function as a data structure.

The distinction between the text describing an algorithm (the

"external representation") and the functional object derived from

this text (the "internal representation") is a useful one because

it allows a language designer to describe the syntax of the text

in great detail without making any commitments regarding the Eorin

which the functional object takes. It is possible for them to

take the same form; this is common practice in LISP (provided we

identify s-expressions and cons node structures). In a compiled

language, the functional object is in assembly language. In any

case, leaving the internal representation unspecified allows the

designer to select the implementation which is most efficient or

elegant or convenient. It is also quite useful when there is

more than one possible implementation, such as compiled and

interpreted code.

Unfortunately, though, if we consider "function" as naming

30 Jan 1979 Functions as Data Objects 3

an abstract data type, then the problem of failing to distinguish

a function from its representation is too often present in

implementations of LISP.l In general, a function is usually

embodied by its LAMBDA expression or by an atomic symbol with

which it is identified. This might be explained by noting that,

while LISP's notation comes from that of the LAMBDA calculus of

Church [Church], the idea of representing functions as cons nodes

followed most of the rest of the development of the basis of the

LISP language [McCarthy2l. The notion that "functions are

different from data" carries down to the present day, despite the

semantics of the LAMBDA calculus. 2

The thesis of this paper is that there should be developed

notation and implementation of functions which treats them in

just the same manner as cons nodes or numbers, to the extent

that it makes sense for functions to have the properties of cons

nodes and numbers. This has several consequences. The first is

that one should be able to pass a function as an argument, retur,

it as a value, or assign it to a variable in the same manner (and

using the same mechanisms) as other data objects. The second is

that a function should be a data object independent of its

external representation (as, say, a lambda-expression), just as

numbers are not stored in the same manner as they are printed.

iThe case of MacLISP is discussed in detail in Section 2.

2Several other features of LISP do not agree with the
semantics of the lambda calculus. See [Steele] for a lurther
discussion of this point and an interesting application of lambda
calculus techniques to compiler optimization.

30 Jan 1979 Functions as Data Objects 4

It is true that functions do not have all the same properties a1-

our exemplary data objects, cons nodes and numbers. For example,

one cannot easily test two functions for equality. However, this

is no more an essential property of a data structure than is the

existence of a natural order. This latter property is true of

numbers but not of cons nodes, but does not in any way den-a,,

cons nodes' claim to being legitimate data structures.

Section 4 will present an implementation of functions which

has all these properties. Section 5 suggests a syntax for

function definition and manipulation and shows how it woull 13

implemented using the notions of Section 4. Later sections

proceed to explore other consequences of these ideas; in

particular how programming styles might be .lEected by the

introduction of a "theoretically sound" implementation of

functions. Other issues relating to the implementation of

functions are discussed; in particular, a scheme for organizing

the association list is presented which end3 the need for

specifying different function types for functions which cal

handle optional arguments (e.g., the LIST function).3

3To avoid appearing unduly pedantic, phrases such as "the X
function" will be understood to mean "the ELVction bound to X",
especially when one usually identifies that Eunction with X, as
is the case with LIST, SETQ, LAMBDA, etc. This is in spite of
the fact that this is a crucial distinction here.

II1...

30 Jan 1979 Functions as Data Objects

2. Traditional Implementations of LISP Functions

Most of the major implementations of the LISP language

differ with the views expressed above with respect to t-he

definition and manipulation of functions. We shall consider The

MacLISP implemenation of LISP in detail here. MacLISP was a

direct descendent of the first important implementation of LISP,

and most of the other major implementations in use today share

its basic mechanisms for defining and ,nanipulating Eunctio-3.

In MacLISP, there are two ways to create a function. The

first is to use DEFUN or more primitive means to attach a

function definition to an atomic symbol by placing it on the

symbol's property list under one of the indicators: EXPR, FEXPR,

or MACRO. The representation which is placed under these

indicators is a LAMBDA expression which was created by DEFUN or a

user-defined routine. The interpreter, given an atomic symbol as

the CAR of an s-expression to be evaluated, looks down the

symbol's property list for the first occurrence of one of these

properties. If one is found then the associated LAMBDA

expression is used. Dynamically bound functions ("funargs")

created by FUNCTION or *FUNCTION are bound to atoms as their

values.4 These funargs have the form (FUNARG <function-rep>

4For convenience, we will treat "K is bound to y" as a
symmetric relation. Anyone having a preference as to which is
the proper order of arguments to "is bound to" may translate.

4
'I

30 Jan 1979 Functions as Data Objects 6

{. <BCP>}), where BCP is a representation of an environnent known

as a Binding Context Pointer, essentially an offset into the

stack which allows the evaluator to reconstruct the saved

environment in the variables' shallow-binding "value cell".

Because of MacLISP's stack-like environment mechanis.n, it is not

possible to return a FUNARG with a BCP outside of the dynamic

scope of the environment in which it was created. The FUNCTION

function is essentially the same as the QUOTE function. Indeed,

they are implemented in the same manner. The only need for a

distinction is so that the MacLISP compiler can have the

information that the argument is indeed a function.

MacLISP functions have several interesting properties.

First, given a data object, it is not in general possible to

determine whether it is a function or whether it was intended for

some other purpose. This is not as bad as it sounds; any

composite data structure which is represented as a group of cons

nodes will have the same difficulty. There should be no problems

if the programmer has made an assignment of abstract data types

to all of the program's variables and function arguments.

Second, and more significantly, we see several cases in

which different types of functions are unnecessarily handled

through different mechanisms. For example, a FEXPR's arguments

are passed to it as a list which is bound to its first specified

argument name. If a second argument name is provided, it is

bound to the environment in which the function is being invoked

in case the function should want to evaluate one of the other

'I!

30 Jan 1979 Functions as Data Ohjsc ,ct 7

arguments in an environment free of its local variable-s. Por

example,

(DEFUN SETQ FEXPR (ARGS ENV)
(SET (CAR ARGS) (EVAL (CADR ARGS) ENV)))

Also, it happens that only the lowliest of functions (the

ordinary EXPR, possibly with a *FUNCTION environment), can exist

independently of an atomic symbol.

Third, and most importantly for our purposes, we see that

there are several ways in which a data object can be bound to an

atomic symbol; indeed two different objects can be bound to a

symbol at one time in the same environment. The only use which

MacLISP makes of this capability is a trick which has a symbol

bound function-wise to a function and value-wise to some binary

indication of whether the function (or the function package which

it represents) is loaded and its feature enabled. This is little

justification for so completely separating the handling of

functions from the handling of other data objects, especially

considering the fact that function binding using property lists

is not sufficient for all purposes. 5

5For an interesting insight into the origins of
property-list definition of functions, compare the discussion of
Section 8 to [McCarthyl], Section 2.3.

I

30 Jan 1979 Functions as Data Objects 8

3. A Notion of "Function as Data Object"

If the conditions regarding the implementation of functions

which were stated in the Introduction are to be satisfied, a kind

of data structure must be designed to embody individual functions

without regard for the entity to which the function is bound or

how it was first created. This structure must include all the

information which is necessary to apply the function to a set o'1

arguments.

In LISP, there are several kinds of properties a function

can have. The two most obvious are whether or not its arguments

should be evaluated and how its body is to be evaluated (e.g.,

the bodies of expr's and fexpr's are evaluated once, whereas

those of macro's are evaluated, and the resulting expression is

also evaluated). Other properties include an environment

assigning values to some or all of the function's free variables,

a "label" for unassigned ("anonymous") functions, and perhaps a

trace routine to print messages on entry and exit. The usual way

of distinguishing the subtleties of functions' definitions (i.e.,

by assigning properties to the atom with which the function is

associated) is in obvious conflict with our assumptions about the

nature of functions. One approach to the problem of defining a

function's many properties would be to declare them all at

definition time, possibly by adding extra entries in the LAMBDA

form. This is not sufficient, however, since we often wish to

add a property to a function after it has been defined, or to

A!

30 Jan 1979 Functions as Data Objects 9

have two versions of ii ,th different properties. This

and the desire of the LIS P iin-I: iry, -) a.i.I .1,, r t a Ic i .

properties conveniently seem to preclude the possibility of

representing a function as a data not]e wiLh s'rrl "'lots", one

for each property.

Many problems of functions as data objects such as

attachment of properties to ftrictional objects can be solved by

appropriating the notion of a "linker no-e" from Wisconsin LISP

[Norman]. The basic structure of a linker node is depicted in

Figure 1. The first word of the node is an instruction of the

machine language (denoted "SCALL <addr>" here) which loads the

address of "Word 1" into some index register and jumps to the

address indicated in the instruction's address field. 6 For a

given function type, the routine at this address is called the

type's "expansion routine". The information pointed at by the

two halves ol word 1 may include a LAMBDA-expression, an

association l.isl (,or- other data structure representing an

environment), or another function node, depending on the function

type.

Linker nodes are created by "typing functions" which are

proviled by LISP and available to the user. Two familiar typing

functions are PJ'NCTION and LABEL. A typing function takes as its
-2 argJrn1~t. a Funic;: .)n (or iI q,)fl . .q.: . .i irjovvl..I l.'..- vyl-

~. I) II I S 1 t s -A I 111K eI 0- rC 1~ 4'i C 11 iI;- A t t

type's expansion routine and the various infornation 1,. -,! ;I1

l i, "1; , , , I zI '. ' 1 .) . n.. routine.

6This is the standard subroutine-call i ntr ct i -I
non-stack architectures; most systems can adapt thiA 7iructure
easily using whatever subroutine-call in-,Lrwi. i 1, .

30 Jan 1979 Functions as Data Objects 10

Evaluation routine forWORD 0 SCALL 4.
this function type.

WORD 1 I I

(Information needed to execute the function)
rigure 1

A complicated function may consist of a long chain of linker

nodes, each of which describes the setting up of one part of the

environment in which the Cunction is to be executed. In the

usual case, the code to be executed by jumping to a linker node

should be just that which would have been required by an

interpreter of the traditional design, say, evaluate the

arguments and bind them on the alist, then evaluate eac'i

expression in the function's body, returning the value of the

last one. The only difference between the traditional and linker

node schemes in this case would be the locationg of the various

J routines to perform these actions. Since each linker node.

* I contains thle adUress of the routine it calls, determining what

type of function is being called does not contribute any extra

* overhead. Thus the linker node function implementation can he

I.

30 Jan 1979 Functions as Data Objects 11

more efficient than traditiorial , 1:hotijh that is not the

major argument in its favor.

30 Jan 1979 Functions as Data Objects 12

4. A Possible Manifestation of the Scheme

Let us propose a set of typing functions and show how they

would be implemented through their expansion routines and the

evaluator. By a "regular form", we mean a function whose

arguments are to be evaluated and whose body is to be executed in

the usual way. A "special form" is defined to be the same as a

regular form, except that its arguments are not to be evaluated

by the interpreter. These are the EXPR's and FEXPR's of MacLISP.

Given functions f and g (which may be either abstract or

concrete), let f o g denote the function which is their

composition, so that (fog) (x)=f(g(x)). Finally, let "<var> <--

<val>" denote "IF <var>=0 THEN <var> <- <val>".

(LAMBDA <argnames> <sexpl> ... <sexpn>) creates a regular form
with the given aiguments and body. A more precise
discussion of LAMBDA's syntax is given in Section 9. The
expansion routine is EXPAND.

(EXPR <fn>) takes a function <fn> and returns a version of it
which is a regular form. The expansion routine is EEXPAND.

(FEXPR <fn>) takes a function <fn> and returns a version of it
which is a special form (aka fexpr). The expansion routine
is FEXPAND.

(MACRO <fn>) takes a function <fn> and returns a version of it
which is a macro. The expansion routine is MEXPhND.

(FUNCTION <fn>) takes a function <fn> and returns a version of it
which has the current environment "trapped" on it, in the
traditional "funarg" manner. The expansion routine is
ENVEXPAND.

L (LABEL <at> <fn>) takes an unevaluated atomic symbol <at> and an
evaluated function <fn> and returns a function g such that
whenever g is called, <at> has the binding <fn>. The
expansion routine is LEXPAND.

30 Jan 1979 Functions as Data Objects 13

All of these are regular LISP functions which return

functional objects (i.e., linker nodes) as values. In

particular, LAMBDA need not be handled specially by the

interpreter; it is a special form of two or more arguments which

returns a function as its value.

These functions should have the following properties:

(i) For t and u in {EXPR, FEXPR, MACROI,
t o u has the same effect as t
t i FUNCTION has the same effect as FUNCTION o t

(ii) If f is the result of several applications of FUNCTION, the

least recently (first) trapped environment is the one to be used

when the function's body is evaluated.

(iii) LABEL assignment should hold regardless of whether the

function is the result of FUNCTION. At most one LABEL may be

assigned.

(iv) Any FUNCTION or LABEL environment bindings should not take

effect until after any evaluation of arguments has taken place.

The pseudo-code to be presented below shows how these

functions and their expansion routines might be implemented on a

standard machine. For the purpose of these illustrations, let us

make some defining assumptions about the LISP of which it is

supposedly a part:

1. The binding mechanism used is deep binding.

2. The alist is implemented as a list of elements of the form

,, ,

30 Jan 1979 Functions as Data Objects 14

(<ats> . <vals>), where <ats> is a list of atomic symbols and

<vals> is a list of the atomic symbols' values. This

implementation of the alist mechanism is interesting in itself,

and Section 9 is dedicated to describing it.

3. System-defined functions such as CAR and CONS are represented

as linker nodes, except that there is a pointer to machine

language code instead of to an s-expression to evaluate.

4. The function evaluator pushes the current environment on the

system stack and the function exit routine pops it.

None of these assumptions is particularly critical in a

linker-node scheme. A shallow-binding system is bound to be more

complex, and linker nodes have little to do with simplifying (or

complexifying) either binding mode, though the modularity they

introduce will make any scheme somewhat easier to modify.

Let us assume the presence of several global variables:

args originally contains the list of expressions which were
given as arguments to the function being processed.
When it is decided what should be done with them (i.e.,
whether they should be evaluated), they are moved to
evargs.

evargs is set to the list of argument values, once they have
been determined. At all times, exactly one of {args,
evargs} is non-zero.

envptr points at the current alist.
altenv is used to hold the funarg environment for the

function being evaluated.
labpair is used to hold the binding specified by LABEL,

i.e., a dotted pair (<name> . <function>).
contptr is used to hold the address of the routine which is

to receive control once the s-expressions to evaluate
and the environment to use are found.

value is used to hold the s-expressions to be evaluated
while control is being transferred to (contptr) and toreturn a function's value.

ti

30 Jan 1979 Functions as Data Objects 15

Given these assumptions, the typing functions and expansion

routines named above could be implemented as follows:

SCALL • EXPAND

,L
<argnames> (<sexpl> ... <sexpn>)

Figure 2

(LAMBDA <argnames> <sexpl> ... <sexpn>) creates the linker node

in Figure 2, where EXPAND is:

IF args # 0
THEN PUSH contptr, altenv, and labpair 7

evaluate the members of args
evargs <- a list of these values
POP contptr, altenv, and labpair

ENDIF

envptr <- cons(cons(<argnames>,evargs),
IF altenv # 0 THEN altenv ELSE envptr)

IF labpair # 0

7This and the simulation program in the appendix suggest
that these variables should be assigned fixed offsets from the
current stack top so that each EVAL invocation will have its own
distinct set of pointers. If the stack is one word wide, then
these variables will probably occupy two words per invocation on
the stack.

t

I I I II~ ll- -

30 Jan 1979 Functions as Data Objects 16

THEN envptr <- cons(labpair,envptr)
ENDIF
value <- (<sexpl> ... <sexpn>)
contptr <-- EVALIT
JUMP TO (contptr)

EVALIT:
IF value points at compiled code
THEN JUMP TO (value)
ELSE args <- value

JUMP TO DO
ENDIF

DO is a function which expects a list of forms to arrive in the

args variable and which evaluates each, returning the value of

the last one.

EEXPAND

SCALL FEXPAND
MEXPAND

respectively

Figure 3 <fn>

(EXPR <fn>), (FEXPR <fn>), and (MACRO <fn>) create the structure

in Figure 3, where EEXPAND is:

1)

a rL4

30 Jan 1979 Functions as Data Objects 17

IF args $ 0
THEN PUSH altenv, label, and labval

evaluate each -entry on args
evargs <- a list of these values
args <- 0
POP altenv, label, and labval

ENDIF
contptr <-- EVALIT
JUMP TO <fn>

FEXPAND is:

IF args # 0
THEN evargs <- args

args <- 0
ENDIF
contptr <-- EVALIT
JUMP TO <fn>

and MEXPAND is:

IF args i 0
THEN evargs <- args

args <- 0
ENDIF
contptr <-- MACEVAL
JUMP TO <fn>

MACEVAL:
IF value points at compiled code
THEN call the routine at value
ELSE call DO(value)

ENDIF
args <- value
JUMP TO EVAL

* EVALIT and MACEVAL are the continuation routines for their

respective function types. The reader is urged to make a careful

comparison between the EXPAND, EEXPAND, FEXPAND, and MEXPAND

routines. We note that EXPR's and FEXPR's differ in the way they

handle their arguments but not in the way they evaluate their

expressions, whereas FEXPR's and MACRO's differ not in the way

they handle their arguments, but in the way they evaluate their

expressions. This is reflected in the ways in which their

\ .

38 Jan 1979 Functions as Data Objects 18

expansion routines manipulate the internal variables. For

example, both the FEXPAND and MEXPAND routines have code to move

the arguments from args to evargs unevaluated if they have not

already been processed, but the EEXPAND routine specifies that

the arguments be evaluated before being moved to evargs. Also,

note that the EEXPAND and FEXPAND routines reference the same

continuation pointer, EVALIT, while MEXPAND references a

different one, MACEVAL. What is more, with a little ingenuity,

the EEXPAND routine could be made part of the EXPAND routine.

Also, note that the three latter expansion routines have nothing

to do with the nature of the environment in which the function is

executed; this is the domain of the expansion routines of

functions like FUNCTION and LABEL.

(FUNCTION <fn>) builds a linker node whose expansion routine is

ENVEXPAND and which points at the current environment and at <f>.

The ENVEXPAND routine is:

altenv <- <environment>
JUMP TO <fn>

Note that the since the innermost FUNCTION environment is the one

to be used, ENVEXPAND does not check whether altenv=0 before

assigning to it.

(LABEL <at> <fn>) builds and returns a linker node whose

expansion routine is LEXPAND and which points at both <at> and

<fn>. The LEXPAND routine is%

labpair <- cons(<at>,<fn>)
JUMP TO <fn>

I I ,

30 Jan 1979 Functions as Data Objects 19

We also define FLAMBDA to have the same effect as

FEXPR o LAMBDA, MLAMBDA to have the same effect as

MACRO o LAMBDA, and F/L to have the same effect as

FUNCTION o LAMBDA. (The writing of these functions and their

expansion routines, FEXPANDI, MEXPANDI, and ENVEXPANDI, is

straightforward, and not included here.)

Having defined the expansion routines, the evaluator only

has to handle atoms, initialize the global variables, and jump to

the function to which the CAR of the form evaluates.

EVAL(sexp)
IF sexp is an atomic symbol

THEN return(lookup(sexp,envptr))
ELSE IF sexp is not a cons node

THEN return(sexp)
ELSE PUSH envptr /* save environment for posterity */

contptr, altenv, and labpair <- 0
push(cdr (sexp))
set fn <- EVAL(car(sexp))
pop(args)
JUMP TO fn

ENDIF
ENDIF

Some of the traditional jobs of EVAL, such as the evaluation

of arguments, have been moved elsewhere in the interpreter.

Others, such as checking for LAMBDA forms and determining what

type of function is being called, have been eliminated by the

structure of the functions' representations.

30 Jan 1979 Functions as Data Objects 20

5. Some Examples and Consequences

We have now written most of a LISP interpreter using the

"function as data object" approach outlined in the introduction.

Let us consider some examples which demonstrate the power and

flexibility of this approach.

Given SET, a regular form of two arguments such that (SET

<var> <val>) assigns <val> as the value for <var>, we can define

the traditional value and function definition mechanisms:

(SET 'SETQ (FLAMBDA (NAME SEXPR)
(SET NAME (EVAL SEXPR))))

(SETQ DEFUN (FLAMBDA (NAME TYPE ARGS SEXPR)
(SET NAME ((EXPR (COND ((EQ TYPE 'EXPR) LAMBDA)

((EQ TYPE 'FEXPR) FLAMBDA)
(T MLAMBDA)))

ARGS SEXPR))))

The fully indoctrinated user of MacLISP or InterLISP might recoil

at the latter definition. Its comprehension admittedly requires

more than one reading. Let us draw some pictures to explain what

goes on in this DEFUN. The value of the atomic symbol DEFUN is

depicted in Figure 4. Suppose we call (DEFUN FOO FEXPR (X Y)

(CONS Y X)). Then the FEXPAND routine, seeing args=(FOO FEXPR (X

Y) (CONS Y X)), sets evargs <- (FOO FEXPR (X Y) (CONS Y X)) and

args <- 0, so that EXPAND will not evaluate the arguments.

EXPAND, not having any arguments to evaluate, creates the new

association list segment depicted in Figure 5. EXPAND then sends

the body of DEFUN to the evaluator. In the course of the

4

30 Jan 1979 Functions as Data Objects 21

DEFIN

SCALL - ,FEXPAND

SCALL "-- EXPAND

(NAME TYPE ARGS SEXPR)
Figure 4

FOO FEXPR (X Y)

SNAME TYPE ARGS SEXPR.

Figure 5

evaluation, COND, upon finding that TYPE is bound to FEXPR,

I _I _ _III I

30 Jan 1979 Functions as Data Objects 22

SCALL EEXPAND

SCALL " "FEXPAND1

[FLAMBOA]

(ARGS SEXPR)Figure 6

returns the PLAMBDA function (ie, the value of the atomic symbol

FLAMBDA) as its value. This function (consisting of one linker

node which points at FEXPANDI) is fed to EXPR to obtain the

structure in Figure 6 (in which [<at>] stands for the machine

language code which executes the function associated with the

atomic symbol <at>).

NOW, args is assigned the value (ARGS SEXPR) by EVAL. These

are evaluated by EEXPAND to obtain ((X Y) (CONS Y X)) in evargs,

with args being set to 0. FEXPANDI, finding args=O, assumes that

evargs contains the properly handled arguments and creates the

new segment of the association list depicted in Figure 7. The

code for FLAMBDA proceeds to create and return the structure

depicted in Figure 8. To conclude the evaluation, SET assigns

this to FOO, which is the value of NAME.

30 Jan 1979 Functions as Data Objects 23

Lil

(X Y) {.

ARGS SEXPR Figure 7

SCALL FEXPAND1

S S

(X Y) ((CONS Y X))
Figure 8

Similar techniques can be developed for such definitions as:

30 Jan 1.979 Functions as Data Objects 24

(SETQ XYZ (LABEL MAPC (LAMBDA (L FN)
(COND ((ATOM L) NIL)

(T (CONS (PN (CAR L))

withthe all:(MAPC
(CDR L) FN)))))))

(XYZ '((A B) (C D)) (F/L (L) (XYZ L PRINT)))

30 Jan 1979 Functions as Data Objectb 25

6. Addition of Function Types

One of the primary advantages of this scheme is seen only by

the LISP maintainer, who is periodically asked to implement new

kinds of evaluation schemes. Two familiar examples, CLOSURE and

TRACE, are sketched here.

(CLOSURE <var-list> <fn>) returns a version of the function

<fn> which behaves similarly to (FUNCTION <fn>) except that only

the values of the variables in <var-list> are trapped; the rest

remain dynamically scoped.

In one implementation, (CLOSURE <var-list> <fn>) could

create and return the structure depicted in Figure 9, where

<val-list> is a list of the values of the variables in

<var-list>, and CEXPAND is:

IF cllist 0
THEN cllist <- cons(cons(<var-list>,<val-list>),cllist)
ELSE cllist <- list(cons(<var-list>,<val-list>))

ENDIF
JUMP TO <fn>

The interpreter is easily extended to allow CLOSUREs; all we need

to do to the code presented above is:

(i) Put "cllist <- 0" with the other initializations in

EVAL,

(ii) NCONC the alist segments on cllist onto the front of

the association list to be used when executing the function,

and

30 Jan 1979 Functions as Data Objects 26

SCALL " -CEXPAND

E11
(Var-list> <val-list>

Figure 9

(iii) Be sure to push and pop clist when evaluating

arguments to functions in expansion routines like EXPAND and

EEXPAND.

Note that, given this implementation, LABEL can be

implemented using the same mechanism as CLOSURE if LEXPAND is:

IF cllist 0 0
THEN cllist <- cons(cons(<atm>,<fn>),cllist)
ELSE c1list <- list(cons(<atm>,<fn>))

ENDIF

(TRACE <f> <g>) is a generalized function-tracing function.

If one wishes some action to be performed on every entry and exit

to <f>, then (TRACE <f> <g>) will return a version of <f> for

which this action is to be performed by <g>. For example, <g>

could print "ENTERING F" and "LEAVING F". The function <g>

30 Jan 1979 Functions as Data Objects 27

should be prepared to receive as arguments the function <f> and a

list of the arguments which were given to the traced version of

<f>.8 The value of (TRACE <f> <g>) is the structure depicted in

Figure 10, where TREXPAND is:

4 SCALL TREXPAND

<f> <g>
Figure 10

evargs <- list(<f>,IF args=0 THEN evargs ELSE args)
JUMP TO <g>

The function <g> could print a message and then call <f>

with the given argument list. To let <g> know <f>'s "identity",

we could do:

(SETQ TRACER (LAMBDA (NAME FN)
(TRACE FN (F/L (FN ARGS)

(PRINT "CALLING " NAME " WITH ARGS:" ARGS)
(APPLY FN ARGS)))))

The writing of APPLY is left as an easy exercise. Note that this

APPLY is substantially less complicated than more traditional

8This design for a function tracing mechanism is part of the~Wisconsin LISP system.

30 Jan 1979 Functions as Data Objects 28

APPLY's. However, it must be decided for each implementation

what it means to give a special form or macro to APPLY.

4'

'I

30 Jan 1979 Functions as Data Objects 29

7. Computing with Functions

Now that we have designed an efficient, general facility for

handling functions of all types, one might ask whether there are

any benefits to be derived. What is presented here is one way in

which one's programming style might change given such a facility.

A common sort of function in LISP takes a function and an

s-expression (usually a list) as arguments and applies the

function several times to different parts of the s-expression.

For example, the MAPCAR function takes as its arguments a

function and a list and applies the function to each element of

the list, returning a list of the results. The MAPCAR function

might be written as:

(SETQ MAPCAR (LAMBDA (FN LST)
(COND ((NULL LST) NIL)

(T (CONS (FN (CAR LST)) (MAPCAR FN (CDR LST)))))))

There is another way of looking at this. Suppose we had a

function VECTORIZE such that (VECTORIZE <fn>) returned a function

which would take a number of arguments and apply <fn> to each

one, returning a list of the values obtained. Then, instead of

writing (MAPCAR LIST '(A B C)), one could write ((VECTORIZE LIST)

'A 'B 'C), and obtain the value ((A) (B) (C)). Given the scheme

described above, VECTORIZE is easily written9 as:

9The CLOSURE's used in these functions are not necessary
except for efficiency and clarity of exposition. To apply one of

L .

30 Jan 1979 Functions as Data Objects 36 I
(SETQ VECTORIZE (LAMBDA (PN)

(CLOSURE '(FN) (LAMBDA ARGS (MAPCAR FN ARGS)))))

Similarly, consider the INDEX function, which takes as its

arguments a function f of two arguments and a list 1 - (xl ...

xn) which contains at least two entries and computes f(xl,f(x2,

., f(xn-2,f(xn-l,xn)) . . .)). If f has reasonable

properties (all that is really required is that its result be of

the same data type as its arguments), then this essentially forms

a generalization of f to any legal number of arguments. The

INDEX function can be written as:

(SETQ INDEX (LAMBDA (FN LST)
(COND ((NULL (CDR LST)) (CAR LST))

(T (PN (CAR LST) (INDEX PN (CDR LST)))))

If we think of INDEX as performing some action on f relative to

the list 1, then what we would really like is a function

INDEXIFY, which would take f as an argument and return a version

of f which can take any number of arguments. This is easily

written as:

(SETQ INDEXIPY (LAMBDA (PN)
* (CLOSURE '(PN) (LAMBDA ARGS (INDEX FN ARGS)))))

This sort of definition has considerable potential for improving

the readability of code. Assuming that the reader trusts in

INDEXIFY's ability to efficiently generalize functions in the

right way, one need only write the 2-argument version of any

these operators to a function with free variables, it should
probably be FUNCTION-ized. Also note that the LAMBDA syntax
described in Section 9 is being used.

30 Jan 1979 Functions as Data Objects 31

desired function and then apply INDEXIFY to it. For example,

(SETQ MIN (INDEXIFY (LAMBDA (X Y)
(COND ((LESSP X Y) X) (T Y)))))

is sufficient to define an n-argument MIN function.

A common and useful operation in Mathematics is to

generalize the definition of a function on numbers to a function

on functions on numbers (and occasionally to a function on

functions on functions on numbers). For example, given functions

f and g on R, it is common to define f+g by (f+g)(x)=f(x)+g(x)

for all x or max(f,g) by max(f,g) (x)=max(f(x),g(x)) for all x.

We can define a function FGENERALIZE to implement this notion of

generalization as follows:

(SETQ FGENERALIZE (LAMBDA (FN)
(CLOSURE ' (FN) (LAMBDA FUNCS

(CLOSURE ' (FN FUNCS) (LAMBDA ARGS
(APPLY FN (MAPCAR FUNCS (LAMBDA (FUNC)

(APPLY FUNC ARGS))))))))))

Given this definition, we can make these definitions:

(SETQ FLIST (FGENERALIZE LIST))
(SETQ ARITHOPS (FLIST PLUS TIMES DIFF QUOTIENT REM))

and compute: (ARITHOPS 9 4) = (13 36 5 2 1).

To complete our set of functional operators, we can define

.1; COMPOSE so that (COMPOSE f g)= f o g and STACKIFY so that

((STACKIFY f) '(xl ... xn)) = (f xl ... xn) by:

(SETQ COMPOSE (LAMBDA (FNI FN2)
(CLOSURE '(FNl FN2) (LAMBDA ARGS

(FNI (APPLY FN2 ARGS))))))

30 Jan 1979 Functions as Data Objects 32

(SETO STACKIFY (LAMBDA (FN)
(CLOSURE '(FN) (LAMBDA (LST) (APPLY FN LST)))))

These operators provide us with an alternate way of defining

functions that is in many ways more appealing than the

traditional method of writing calls on MAPCAR and APPLY in many

places in the code. As an example of these operators, to define

the function "sin squared plus cos squared", we write:

(SETQ SIN2COS2 ((FGENERALIZE PLUS)
(COMPOSE (LAMBDA (X) (TIMES X X)) SIN)
(COMPOSE (LAMBDA (X) (TIMES X X)) COS)))

or

(SETQ SQUAREFN (LAMBDA (FN)
(COMPOSE (LAMBDA (X) (TIMES X X)) FN)))

(SETQ SIN2COS2 ((STACKIFY (FGENERALIZE PLUS))
((VECTORIZE SQUAREFN) SIN COS)))

In contexts where we think of ourselves as modifying or

operating on functions, this type of programming can ease both

the reading and writing of programs. However, a programmer will

only use a facility such as this if it is known to be both

convenient and efficient. Allowing a programmer this flexibility

is one of the major reasons for adopting an implementation of

functions (or of anything, for that matter) which is uniform in

its notation and execution.

4?"

rJ

30 Jan 1979 Functions as Data Objects 33

8. What is Meant by "Referring to a Function"?

A problem which is commonly encountered by LISP programmers

is exemplified by this conversation:

> (SETQ FACT (LAMBDA (N)
(COND ((LESSP N 2) 1)

(T (TIMES N (FACT (SUB1 N)))))))
>> "DONE"
"FACT is bound to the factorial function."
> (FACT 4)
>> 24
"Good, it works."
> (SETQ FACTORIAL FACT)
>> "DONE"
"Now FACTORIAL is the factorial function."
> (FACTORIAL 5)
>> 120
"Good, it works."

> (SETQ FACT (LAMBDA (TEMPLATE)
(LOOKUP TEMPLATE MAIN-DATA-LIST)))

> "DONE"
"Now FACT is the main data-base lookup function."
>> (FACT '(LOVES ?X ?Y))
> ((FACT-27 (X . JOHN) (Y . MARY))

(FACT-92 (X . MARY) (Y . BILL)))
"Good, it works."
>> (FACTORIAL 3)
> "CAN'T MULTIPLY BY NIL"
"Oops, what happened?"

What happened, of course, is that the LAMBDA-expression

which is bound to FACTORIAL makes reference to FACT rather than

to FACTORIAL when recursing. The functional object which was

originally bound to FACT is not really the factorial function in

the manner in which we would like to consider it. It is only the

factorial function when it is bound to FACT; when something else

is bound to FACT, it becomes something different.

30 Jan 1979 Functions as Data Objects 34

It would appear that, in this case at least, we have not

completely succeeded in separating internal and external

representations of functions (i.e., it is necessary for FACT to

represent the factorial function). There exists a construct

which will patch this example. It is called LABEL, and was once

widely used to write unbound ("anonymous") LAMBDA-expressions

which were recursive. The implementation of LABEL in the linker

node scheme is straightforward and is described in Section 4.

What is needed in the FACT/FACTORIAL example above is to make the

fact that FACT is the factorial function part of the definition

of the factorial function itself. We can use the LABEL construct

to achieve this end by writing:

(SETQ FACT (LABEL FACT (LAMBDA (N)
(COND ((LESSP N 2) 1)

(T (TIMES N (FACT (SUB1 N))))))))

Having done this, we can give FACT's binding to FACTORIAL and

rebind FACT, and FACTORIAL will still be bound to the factorial

function. This is because the FACT reference in the factorial

function refers to the LABEL FACT, not to the SETQ FACT.

While this works in this one case, the whole world is not as

simple as the factorial algorithm. The typical program is

written as a large collection of function definitions (i.e.,

bindings of function objects to atomic symbols) which refer to

one another in complex patterns. For example, it often happens

that two functions will refer to one another; they are said to be

"mutually recursive". The usual structure for a large program is

for there to be a large number of small "primitive" operations,

30 Jan 1979 Functions as Data Objects 35

usually performing the basic operations on various kinds of data

structures or summarizing frequently performed actions. Most of

the rest of the functions use these primitive ones. The rest of

the functions are usually grouped roughly hierarchically, with a

few "top level" functions calling their "helper functions" which

call their helper functions and so on. The top level functions

form the interface to the outside world. If the program is being

presented as a "package" for other users, then all that is

described is the set of top level functions which are to be

referenced by calling programs as their primitives. As far as

the calling program is concerned, these functions perform some

(probably quite complex) operations which are defined in terms of

their effects rather than their algorithms. In a sense, all the

lower members of the hierarchy are clauses of the top level

functions; they have no meaning except as referenced by their

given names by their initially defined callers. Such collections

of definitions are prone to having their members' names

accidentally re-defined by another programmer who is using the

package. One usually attempts to prevent this by encoding the

names of the functions (in the appendix, many variable and

function names have X prefixes in the hope that calling

functions' names won't start with X). This is not quite a

satisfactory solution for the same reason that encoded names are

not quite a satisfactory solution to the funarq problem; they are

clumsy, and the possibility still remains of tripping over one of

them. What is desired is for a program to be able to interact

with the outside world in only one way: through the top level

30 Jan 1979 Functions as Data Objects 36

functions.

One somewhat less than satisfactory solution would be to

borrow the idea of a "program module", which hides all but the

requested function names. Again assuming deep binding and the

Section 9 alist structure, we could define the MODULE function

with the following syntax:

r '(MODULE <list of environments>

(<function name 1> <function 1>)
(<function name 2> <function 2>)

(<function name n> <function n>))

where the <list of environments> and <function i> parameters are

evaluated. This creates and returns an alist segment which, for

1 < k < n, binds <function name k> to a version of <function k>

which has a closure consisting of copies of the environments in

<list of environments> and, circularly, the bindings of

<function name i> for 1 < i < n.

For example, the call:

(MODULE (LIST '((A B) . (1 2)) '((C D) . (3 4)))

(FNl (LAMBDA (X) (FN2 (* C (SUB1 X)))))
(FN2 (LAMBDA (Y) (PRINT (+ B Y))))
(FN3 (FLAMBDA (Z W) (CONS W Z))))

would return the hopelessly involved structure depicted in Figure

11.

This structure has the property that the variables A, B, C,

* D, FNI, FN2, and FN3 are part of the module in that the effects

of any SETQ's on them will remain in the structure. This is

certainly reasonable; the same thing will happen in a

tL

30 Jan]979 Functions as Data Objects 37

Figure 11

FUNCTION-trapped environment. In the latter case, this effect

can serve as a means of communication between functions in

different environments.

To use this facility, one breaks up the set of functions

being defined into convenient, conceptually related subsets, each

of which should be made into a module. As an example, a program

might be organized this way:

(SETQ PRIMIT TVES (MODULE NIL
(<primitive 1> <defn of primitive 1>)

(<primitive n> <defn of primitive n>)))
(SETQ LOW-LEVEL-PACKAGE-i (MODULE (LIST PRIMITIVES)

(<low level function 1> <its defn>)

(<low level function n> <its defn>)))
(SETQ LOW-LEVEL-PACKAGE-19 (MODULE (LIST PRIMITIVES)

...))

(SETQ FROTZ-PACKAGE (MODULE
(LIST LOW-LEVEL-PACKAGE-i ...

4.

30 Jan 1979 Functions as Data Objects 38

LOW-LEVEL-PACKAGE-19)
(TOP-LEVEL-FUNCTION-i <its defn>)

(TOP-LEVEL-FUNCTION-5 <its defn>)))

While this bizarre scheme solves the problems of function

reference discussed above, it is rather intimately tied to the

assumption of deep binding. It therefore carries with it the

major problem with deep binding: it is prone to large value

lookup times. Since function names are almost always free

variables, the search time for them will be the greatest. This

is an important consideration when one is deciding between deep

and shallow binding in a LISP system. Shallow binding allows

fast and easy lookup of values, while deep binding allows fast

and easy changes of environments.

K'

30 Jan 1979 Functions as Data Objects 39

9. How to Build an Association List

Besides the means of creating and manipulating functional

objects, another topic in LISP implementations which varies

between various LISP implementations is the question of how one

denotes and manipulates functions which can take varying numbers

of arguments. A general and convenient syntax and implementation

is described here.

Recall the assumption about the structure of the alist which

was made when introducing LAMBDA, EXPR, and so forth in Chapter

4. The alist was assumed to be a list of alist "segments", each

of the form (<variables> . <their values>). The code for EXPAND

took the argument list directly as specified in the definition of

the function and made it into the <variables> entry for the new

segment of the alist. If we adopt a convenient notation for

optional and extra arguments, we can keep this alist structure by

just implementing a slightly more complex alist lookup mechanism.

The suggested syntax for LAMBDA is as follows:

A LAMBDA-expression has the form (LAMBDA <arglist> <bodyl>
<bodyn>), where

<arglist> -> <variable> I <varlist> < (extended varlist>
<varlist> -> (<variable>*)
<extended varlist> -> (<variable>* . <variable>)
<variable> -> <atomic symbol>

For example, if we do (SETQ FOO (LAMBDA (A B . C) (LIST A B C))),

then (FOO 'X 'Y 'Z 'W) will return (X Y (Z W)), because, inside

FOO, A will be bound to X, B will be bound to Y, and C will be

30 Jan 1979 Functions as Data Objects 40

bound to a list of the remaining arguments, (Z W). We could also

define the LIST function by (SETO LIST (LAMBDA ARGS ARGS)),

because ARGS would be bound to a list of all the arguments given

to LIST (once they were evaluated).

To implement this, the code which binds arguments to their

values on the alist looks like:

alist <- cons(cons(<arg list>,<arg values>),alist)

The code for the alist search algorithm is:

lookup(var)
seg <-alist
WHILE seg #-nil DO

varlst <- car(car(seg))
vallst <- cdr(car(seg))
WHILE varlst is not an atom AND vallst d nil DO

IF car(vallst) = var
THEN return(car(vallst))
ELSE varlst <- cdr(varlst)

vallst <- cdr(vallst)
ENDIF

ENDWHILE
IF varlst = var

THEN return(vallst)
ENDIF
seg <- cdr(seg)

ENDWHILE
yell() /* variable is not on alist */

This algorithm has some interesting consequences. For

example, if some random piece of code needs to place a single

variable-value pair on the alist, it need only do:

alist <- cons(cons(variable,value),alist)

Also, the alist is built partially of cons nodes which are part

of function definitions, since the argument lists are not

\A

30 Jan 1979 Functions as Data Objects 41

analyzed in any way; they are simply consed into the alist. In

the case of special forms and macros, the value list is also made

part of the alist, but this might not be entirely desirable since

many SETQ mechanisms RPLACA alists (and thus the source code for

the special form calls). Thus this scheme saves cons nodes in

many situations without excessively slowing the lookup mechanism.

(This is not quite true if the implementation in question

requires more than a couple of instructions to determine whether

a given pointer's referent is an atom.)

is

30 Jan 1979 Functions as Data Objects 42

10. Conclusion

This paper has presented a theory and implementation of

functions which are to be considered as data objects. Some

fairly important points have been made which deserve to be

summarized:

1. It is both reasonable and desirable to treat functions as

data objects. This is approached from the view of abstract data

structures.

2. The major existing implementations of LISP do not make

the distinction between internal and external representations of

functions which is necessary to make comprehensible the concept

of functions as data objects.

3. Programmers wish to deal with several types of functions.

Implementation can be eased by analyzing the nature of the

differences between these function types. In this somewhat

idealized exposition, the differences were decomposed into: (i)

the manner of evaluation of arguments, (ii) the nature and

content of the environment in which the body is to be evaluated,

and (iii) the manner of evaluation of the body. This

- decomposition is reflected in the way in which the interpreter's

various internal variables were handled.

4. Function-based computation, if effectively implemented,

could be a valuable programming tool. Expressing complex

I- i

30 Jan 1979 Functions as Data Objects 43

operations as operators on functions can effectively hide control

constructs which are not necessary for exposition.

The discussion of Section 8 has made it clear that the last

word has not yet been written on the subject. What has been

shown is that it is possible to improve the theoretical basis of

current implementations of LISP, and in doing so ease the task of

the programmer who must deal with complicated algorithms and

control structures.

30 Jan 1979 Functions as Data Objects 44

11. Bibliography

[Allen] Allen, John, "Anatomy of LISP", McGraw-Hill, New York,
1978

[Church] Church, Alonzo, "The Calculi of Lambda-conversion",
Annals of Mathematics Studies, Princeton University
Press, 1941; Reprinted by Klaus Reprint Corp., New
York, 1965

[McCarthyl] McCarthy, John, et al., "LISP 1.5 Programmer's
Manual", Second Edition, MIT Press, Cambridge, 1965

[McCarthy2l McCarthy, John, "History of LISP", in "Proceedings of
the SIGPLAN History of Programming Languages
Conference", June 1978

[Norman] Norman, Eric, "Documentation for 1100 LISP
Implementation", unpublished paper, University of
Wisconsin at Madison, 1976

[Steele] Steele, Guy, "Rabbit: A Compiler for Scheme", MIT AI Lab
Report AI-TR-474, May 1978

[Steele&Sussman] Steele, Guy, and Gerald Jay Sussman, "The Art of
the Interpreter, or, The Modularity Complex (Parts
Zero, One, and Two)", MIT AI Lab Memo 453, May 1978

*/

;=,, " , , , , , i I Il I I I I I I lll llI I II _I_ _I

30 Jan 1979 Functions as Data Objects 45

12. Appendix - A LISP Rendering of the Scheme

The LISP code presented here simulates the typing functions
and evaluator presented in this paper. It is written in
Wisconsin LISP, which already possesses most of the
characteristics this system is supposed to implement, but the
code does provide a further understanding of the intent of the
algorithms.

?
? The One True LISP Interpreter
? Phil Agre, January 1979

? The data type codes used are: 0 is cons node, 1, 2, and 3 are
? numbers, 4 is system code, 5 is compiled code, 6
? is linker node, 7 is atomic symbol, and 8 is string.

? The typing functions will take either iTLI-defined functions
? or Wisconsin LISP-defined functions, but not DEFSPEC's,
? DEFMAC's, or traced versions of either of these.
? Other bugs probably abound.

? A crude structure scanning readmacro package is used here.
? /<sexpr> expands into a call on S-STRUCTSCAN which evaluates
? all expressions which have S-SCANFLAG's consed onto them,
? where ,<sexpr> expands into (S-SCANFLAG . <sexpr>).

? The lTLI versions of LAMBDA and FUNCTION are called XLAMBDA
? XFUNCTION, resp., to avoid collisions with the Wisconsin
? LISP names. Also, PROG's are not handled by ITLI.

? The lTLI evaluator is called XEVAL (so as not to conflict with
? the existing EVAL function).

(CSETQ XEVAL (LAMBDA (X-SEXPR)
(COND ((ATOM X-SEXPR) (EVAL X-SEXPR))

((AND (EQUAL (TYPE (CAR X-SEXPR)) 7)
(CSETQ ::Tl (GET (CAR X-SEXPR) 'FEXPR)))

(::Tl (STACK (CDR X-SEXPR))))
((EQ (CAR X-SEXPR) 'QUOTE) (CADR X-SEXPR))
((EQ (CAR X-SEXPR) 'COND)

(XCOND (CDR X-SEXPR)))
((EQ (CAR X-SEXPR) 'CSETQ)

(CSET (CADR X-SEXPR) (XEVAL (CADDR X-SEXPR))))
((EQ (CAR X-SEXPR) 'SETQ)

(SET (CADR X-SEXPR) (XEVAL (CADDR X-SEXPR))))
((MEMBER (CAR X-SEXPR) FEXPR-LIST)

36 Jan 1979 Functions as Data Objects 46

(EVAL X-SEXPR))
((AND (ATOM (CAR X-SEXPR))

(MEMBER (TYPE (EVAL (CAR X-SEXPR))) '(4 6)))
((EVAL (CAR X-SEXPR))

(STACK (INTO (CDR X-SEXPR) XEVAL))))
(T (XEVALl (XEVAL (CAR X-SEXPR)) (CDR X-SEXPR)

6 0 0 6 0)))))
?

? XEVALl establishes the local variables for the other
? routines to manipulate.~?

(CSETQ XEVALl (LAMBDA (X-FN X-ARGS X-EVARGS X-LABPAIR
X-ALTENV X-CLOSE X-CONT)(XEVAL X-FN)))

? (APPLY <fn> <arglist>) executes the function <fn> with
? the given arguments without evaluating them.
? (STACK is a thoroughly disgraceful hack which
? takes as its argument a list of objects and shuffles
? the stack so that the surrounding function will appear
? to have been given those objects as arguments.)
?
(CSETQ APPLY (LAMBDA (X-FN X-ARGS)

(COND ((MEMBER (TYPE X-FN) '(4 6))
(X-FN (STACK X-ARGS)))

(T (XEVAL1 X-FN 0 X-ARGS 0 0 6 0)))))
?

? A list of the special forms which must be handled
? specially by the interpreter. (These are functions
? defined by Wisconsin LISP, not Fexpr's defined through
? the ITLI interpreter.)
?

(CSETQ FEXPR-LIST '(ZEROSET LAMBDA LAMDA DEFSPEC DEFMAC
S-STRUCTSCAN))

? This executes COND's for lTLI.

(CSETQ XCOND (LAMBDA (X-CONDS)
(PROG (VAL)

(MAPC X-CONDS (LAMBDA (X-CLAUSE)
(SETQ VAL (XEVAL (CAR X-CLAUSE)))
(COND (VAL (RETURN (XDO (CDR X-CLAUSE)))))))

(RETURN NIL))))

? Provisionally define the LAMBDA's.
?
(MAPC '((XLAMBDA . EXPAND) (FLAMBDA . FEXPAND1)

(MLAMBDA . MEXPAND1))
(LAMBDA (X-PR)

(EVAL /(DEFSPEC ,(CAR X-PR) (LAMBDA (X-ARGS . L-EXPRS)
(LIST ',(CDR X-PR) X-ARGS L-EXPRS))))))

7

? To define FEXPR's which must be interpretable by ITLI but
? defined in Wisconsin LISP, we revert to the hack of putting

30 Jan 1979 Functions as Data Objects 47

? function definitions on property lists. It should be
? emphasized that this has nothing to do with the real
? implementations of the ITLI functions.
?
(DEFSPEC PSEUDOFEXPR (LAMBDA (X-NAME X-FN)

(PUT X-NAME 'FEXPR (EVAL X-FN))))
?
? Define (LABEL <atom> <fn>) to return a version of <fn>
? which will always be run in an environment in which
? <atom> is bound to <fn>.

(PSEUDOFEXPR LABEL (LAMBDA (X-ATM X-FN)
/(LEXPAND ,X-ATM ,(XEVAL X-FN))))

? (XFUNCTION <fn>) is MacLISP's (*FUNCTION <fn>). It
? grabs the current alist and makes it part of the
? version of <fn> which is returned.

(CSETQ XFUNCTION (XLAMBDA (X-FN)
/(ENVEXPAND ,(CLEANALIST (ALIST)) ,X-FN)))

? (CLOSURE '(<atml> ... <atmn>) <fn>) constructs associations
? between the <atmi>'s and their current values and attaches
? them to the version of <fn> which is returned. All
? other functions are allowed to retain the dynamic
? binding mechanism.

(CSETQ CLOSURE (XLAMBDA (X-VARS X-FN)
/(CEXPAND ,(INTO X-VARS (LAMBDA (X-VAR)

(ASSOC X-VAR (ALIST))))
X-FN)))

? This is the expansion routine for EXPR.
~?

(PSEUDOFEXPR EEXPAND (LAMBDA (X-FN)
(ZEROSET X-CONT XDO)
(COND ((ZEROP X-ARGS))

(T (SETQ X-EVARGS (INTO X-ARGS XEVAL))
(SETQ X-ARGS 0)))

(EXECUTE X-FN)))
?
? This is the expansion routine for FEXPR.

(PSEUDOFEXPR FEXPAND (LAMBDA (X-FN)
(ZEROSET X-CONT XDO)
(MOVEARGS)
(EXECUTE X-FN)))

I?
? This is the expansion routine for MACRO.

(PSEUDOFEXPR MEXPAND (LAMBDA (X-FN)
(ZEROSET X-CONT (LAMBDA (X-SEXPRS) (XEVAL (XDO X-SEXPRS))))
(MOVEARGS)
(EXECUTE X-FN)))

VL .. ,i, i" :

30 Jan 1979 Functions as Data Objects 48

? This is the expansion rcatine for LAMBDA.

(PSEUDOFEXPR EXPAND (LAMBDA (X-ARGNAMES X-EXPRS)
(ZEROSET X-CONT XDO)
(EVALEXPRS X-EXPRS (APPEND (MATCHUP X-ARGNAMES (XARGLIST))

(XALIST (CDDR (ALIST)))))))

? This is the expansion routine for FLAMBDA.

(PSEUDOFEXPR FEXPANDI (LAMBDA (X-ARGNAMES X-EXPRS)
(MOVEARGS)
(ZEROSET X-CONT XDO)
(EVALEXPRS X-EXPRS (APPEND (MATCHUP X-ARGNAMES X-EVARGS)

(XALIST (CDDR (ALIST)))))))
?
? This is the expansion routine for MLAMBDA.
7

(PSEUDOFEXPR MEXPANDI (LAMBDA (X-ARGNAMES X-EXPRS)
(MOVEARGS)
(ZEROSET X-CONT (LAMBDA (X-SEXPRS) (XEVAL (XDO X-SEXPRS))))
(EVALEXPRS X-EXPRS (APPEND (MATCHUP X-ARGNAMES X-EVARGS)

(XALIST (CDDR (ALIST)))))))
7
? This is the expansion routine for LABEL.

(PSEUDOFEXPR LEXPAND (LAMBDA (X-ATM X-FN)
(SETQ X-LABPAIR (CONS X-ATM X-FN))
(EXECUTE X-FN)))

?
? This is the expansion routine for CLOSURE.

(PSEUDOFEXPR CEXPAND (LAMBDA (X-VARS X-FN)
(COND ((ZEROP X-CLOSE) (SETQ X-CLOSE X-VARS))

(T (SETQ X-CLOSE (APPEND X-VARS X-CLOSE))))
(EXECUTE X-FN)))

?
? This is the expansion routine for XFUNCTION.
7
(PSEUDOFEXPR ENVEXPAND (LAMBDA (X-ALST X-FN)

(ZEROSET X-ALTENV X-ALST)
(EXECUTE X-FN)))

? The EXPR, FEXPR, and MACRO functions each take a function
? as an argument and return a version of that function
? which is an expr, a fexpr, or a macro, resp.
?
(MAPC '((EXPR . EEXPAND) (FEXPR . FEXPAND) (MACRO . MEXPAND))

(LAMBDA (X-PR)
(EVAL /(CSETQ ,(CAR X-PR) (XLAMBDA (X-FN)

(LIST ',(CDR X-PR) X-FN))))))

? Redefine the LAMBDA's so that they can be interpreted by iTLI.
? (Re-define FLAMBDA last.)

30 Jan 1979 Functions as Data Objects 49

(MAPC '((XLAMBDA . EXPAND) (MLAMBDA . MEXPANDI)
(FLAMBDA . FEXPANDI))

(LAMBDA (X-PR)
(EVAL /(CSETQ ,(CAR X-PR) (FLAMBDA (X-ARGS . Ll-EXPRS)

(LIST ',(CDR X-PR) X-ARGS Ll-EXPRS))))))

? If the arguments have not already been processed,
? then (MOVEARGS) will cause them to be moved to
? X-EVARGS unevaluated.

(CSETQ MOVEARGS (LAMBDA NIL
(COND ((ZEROP X-ARGS))

.(T (SETQ X-EVARGS X-ARGS)
(SETQ X-ARGS 0)))))

? (ZEROSET <var> <val>) is "if <var>=O then <var> <- <val>".

(DEFSPEC ZEROSET (LAMBDA (X-VAR X-VAL)
(COND ((ZEROP (EVAL X-VAR)) (SET X-VAR (EVAL X-VAL))))))

? EXECUTE could be replaced by XEVAL except for the
? possibility of having non-iTLI functions floating
? around. We note that XEVAL'ing a function here is
? the analog of jumping to it in the assembly language
? code.

(CSETQ EXECUTE (LAMBDA (X-FN)
(COND ((MEMBER (TYPE X-FN) 9(4 6))

(X-FN (STACK (XARGLIST))))
(T (XEVAL X-FN)))))

? XARGLIST evaluates the arguments if they have not
? yet been processed.

(CSETQ XARGLIST (LAMBDA NIL
(COND ((ZEROP X-ARGS) X-EVARGS)

(T (INTO X-ARGS XEVAL)))))
?

? This function binds variables to their values.
? See the section on alist implementation.

(CSETQ MATCHUP (LAMBDA (X-NAMES X-VALS)
(COND ((NULL X-NAMES) NIL)

((ATOM X-NAMES) (LIST (CONS X-NAMES X-VALS)))
((ATOM X-VALS) (PRINT "NOT ENOUGH ARGUMENTS") NIL)
(T (CONS (CONS (CAR X-NAMES) (CAR X-VALS))

(MATCHUP (CDR X-NAMES) (CDR X-VALS)))))))

? Given the body of a function and an alist, this
? function does the evaluation in the presence of the
? given alist.

(CSETQ EVALEXPRS (LAMBDA (X-EXPRS X-ALST)

'4

30 Jan 1979 Functions as Data Objects 50

(EVAL /(,X-CONT ',X-EXPRS) X-ALST)))
7
? (XDO <list-of-s-expressions>) evaluates each s-expression
? and returns the value of the last one.
7

(CSETQ XDO (LAMBDA (X-EXPRS)
(COND ((ATOM X-EXPRS) NIL)

((ATOM (CDR X-EXPRS)) (XEVAL (CAR X-EXPRS)))
(T (XEVAL (CAR X-EXPRS)) (XDO (CDR X-EXPRS))))))

?
? XALIST takes a sanitized version of the current alist and
? figures out what alist to use in evaluating the body
? of the current function.

(CSETQ XALIST (LAMBDA (X-ALST)
(COND ((ZEROP X-ALTENV))

(T (SETQ X-ALST X-ALTENV)))
(COND ((ZEROP X-LABPAIR))

(T (SETQ X-ALST (CONS X-LABPAIR X-ALST))))
(COND ((ZEROP X-CLOSE))

(T (SETQ X-ALST (APPEND X-CLOSE X-ALST))))
(CLEANALIST X-ALST)))

? Mark all the variables which should not be involved in
? trapped environments.

(CSETQ INTERNAL-VARS I(X-SEXPR X-FN X-ARGS X-EVARGS X-LABPAIR
X-ALTENV X-CLOSE X-CONT X-CONDS X-VAL X-ATM X-VARS
X-ARGNAMES X-EXPRS X-ALST X-PR X-VAR X-CLAUSE X-NAME
S-STRUCT))

(MAPC INTERNAL-VARS (LAMBDA (VAR) (FLAG VAR 'INTERNAL-VAR)))
7
? CLEANALIST takes an association list and removes
? from it the bindings of internal variables.

(CSETQ CLEANALIST (LAMBDA (X-STARTALIST)
(PROG ((X-ALST X-STARTALIST) (X-RES '(CLEAN)))
LOOP (COND ((NULL X-ALST)

(RETURN (REVERSE X-RES)))
((EQ (CAR X-ALST) 'CLEAN)

(RETURN (APPEND (REVERSE X-RES)
(CDR X-ALST))))

((ATOM (CAR X-ALST)) (GO DECR))
((IFFLAG (CAAR X-ALST) 'INTERNAL-VAR)

(GO DECR)))
(SETQ X-RES (CONS (CAR X-ALST) X-RES))

DECR (SETQ X-ALST (CDR X-ALST))
(GO LOOP))))

7 This is the interpreter.

(CSETQ XINTERPRETER (LAMBDA NIL(PRINT - ")
(PRINT *ONE TRUE LISP INTERPRETER 1.0")

30 Jan 1979 Functions as Data Objects 51

(PRINT
((LAMBDA (X-CONT)

(LISP (LAMBDA NIL
(SETO X-CONT 0)
/',(XEVAL (*READ "XEVAL:")))))

